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[1] Comparison of the land surface skin temperature (LST) from the National Centers for
Environmental Prediction (NCEP) operational Global Forecast System (GFS) against
satellite and in situ data in summer 2007 indicates that the GFS has a large and cold bias
in LST over the arid western continental United States (CONUS) during daytime. This
LST bias contributes to large errors in simulated satellite brightness temperatures over
land by the Community Radiative Transfer Model (CRTM) and hence the rejection of
satellite data in the NCEP Gridpoint Statistical Interpolation (GSI) system, especially for
surface-sensitive satellite channels. The new vegetation-dependent formulations of
momentum and thermal roughness lengths are tested in the GFS. They substantially
reduce the large cold bias of daytime LST over the arid western CONUS in the warm
season. This, in turn, significantly reduces the large biases of calculated satellite brightness
temperatures found for infrared and microwave sensors in window or near-window
channels, so that many more satellite data can be assimilated in the GSI system. In the arid
western CONUS, the calculation of surface emissivity for microwave sensors in the CRTM
can be further improved, and the new microwave land emissivity model together with
increased LST via changes in surface roughness length formulations reduces biases and
root-mean-square errors in the calculated brightness temperature.
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1. Introduction

[2] In recent years, satellite measurements are being
increasingly used in weather and climate prediction systems
[Uppala et al., 2005; Marshall et al., 2007; Sakamoto and
Christy, 2009]. Satellite data differ from many conventional
data in that the measurements are often indirect observations
of meteorological parameters. For example, satellite radian-
ces are the observations which measure upwelling radiation
at the top of atmosphere. At the National Centers for Envi-
ronmental Prediction (NCEP), most satellite radiance mea-
surements in various spectral channels are assimilated as
radiances into the operational Global Data Assimilation
System (GDAS) through the Gridpoint Statistical Interpo-
lation (GSI) and the Joint Center for Satellite Data Assim-
ilation (JCSDA) Community Radiative Transfer Model
(CRTM) [Han et al., 2005]. A new three-dimensional var-
iational data assimilation (3DVAR) analysis system, GSI,

was implemented into the GDAS on 1 May 2007, replacing
the Spectral Statistical Interpolation (SSI) 3DVAR system,
which had been operational since 1991 [Parrish and Derber,
1992; Derber and Wu, 1998; Wu et al., 2002; Kleist et al.,
2009]. The atmospheric analysis is generated every 6 h by
the GSI with the NCEP operational Global Forecast System
(GFS) previous forecast as the background. This analysis is
then used as the initial conditions for GFS subsequent fore-
casts, and the cycle continues. Radiance data from many
satellite sensors have been assimilated in the current opera-
tional GDAS such as the High Resolution Infrared Radiation
Sounder (HIRS), Microwave Humidity Sounder (MHS),
Advanced Microwave Sounding Unit-A (AMSU-A) and -B
(AMSU-B), the Atmospheric Infrared Sounder (AIRS) on
the EOS-Aqua, Geostationary Operational Environmental
Satellites (GOES) sounder and the Meteorological Opera-
tional satellite (METOP) Infrared Atmospheric Sounding
Interferometer (IASI).
[3] Currently, satellite measurements over the ocean have

been successfully utilized to improve numerical weather pre-
diction (NWP) [Marshall et al., 2007]. However, it is noticed
that the utilization of satellite data assimilated over land in the
GSI is far less than over ocean, because of the difficulty in
simulating land surface emissivity and temperature. Figure 1
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shows a case on the spatial distribution of assimilated NOAA-
18 AMSU-A channel 15 data from the NCEP radiance
assimilation monitoring for the operational GDAS. Over the
western continental United States (CONUS), less data is
assimilated at 18:00 UTC than at 12:00 UTC. One of the chief
reasons is that there is a much larger bias in the current NCEP
operational GFS predicted land surface skin temperature
(LST) over desert and arid regions during daytime in the
warm season than in the early morning. In fact, LST predicted
by the GFS is a critical factor in determining the simulated
top-of-atmosphere brightness temperature (Tb) for satellite
surface-sensitive channels in the GSI. With large bias in LST,
the CRTM simulates unreasonable Tb, thus large amounts of
satellite data are rejected in the GSI/CRTM analysis step,
especially for surface-sensitive satellite channels.
[4] The NCEP operational GFS is a spectral model (current

operational horizontal resolution is T574) with 64 vertical
levels, defined using a hybrid sigma-pressure coordinate,
with substantial upgrades in recent years (http://www.emc.
ncep.noaa.gov/GFS). In particular, the Noah land surface
model (LSM) (Version 2.7.1) replaced the Oregon State
University (OSU) LSM, which had been operational in the
GFS since the mid-1990s [Chen et al., 1996; Koren et al.,
1999; Ek et al., 2003; Mitchell et al., 2005]. LST is derived
from the surface energy budget. The Noah LSM has four
soil layers (10, 30, 60, 100 cm thick), including updated
treatments of frozen soil physics, infiltration and runoff,
snowpack, canopy resistance, ground heat flux, soil thermal
conductivity, direct surface evaporation and green vegetation
cover. In terms of land surface characteristics, 9 soil tex-
ture classes [Zobler, 1986, 1999] and 13 vegetation types
[Dorman and Sellers, 1989] are used. Green vegetation
fraction (GVF) is obtained with the NESDIS 5 year (from
April 1985 to March 1991 with year 1988 excluded)

Normalized Difference Vegetation Index (NDVI) monthly
climatology [Gutman and Ignatov, 1998]. Momentum
roughness lengths over land are prescribed for each month
based on calculations from the vegetation and land use data
set of Dorman and Sellers [1989]. Monthly variation of
snow-free surface albedo is derived in reference to Staylor
and Wilbur [1990], and for a snow case, its albedo is cal-
culated in the Noah LSM. Longwave emissivity is pre-
scribed to be unity (blackbody emission) for all surfaces.
[5] Our investigation in the GFS testing has revealed that a

major cause of the cold daytime LST bias is related to the
treatment for roughness lengths, particularly thermal
roughness length (z0t) in the physics of surface turbulent heat
transfer. The computation of LST in land models depends on
the treatment of the ratio of the roughness length for
momentum z0m over the roughness length for heat z0t, the
characterization of vegetation, and other model details [Yang
et al., 2008]. For instance, an annual maximum GVF along
with seasonally variable leaf area index (LAI) is used in
the Community Land Model (CLM4) [Oleson et al., 2010],
while seasonally varying GVF along with a constant LAI
is used in the Noah land model [Mitchell et al., 2004].
Furthermore, in land models with prescribed annually max-
imum GVF (e.g., CLM4), bare soil and vegetated area are
treated separately. In contrast, bare soil and vegetated area
are treated together in Noah.
[6] In all these land models, an important physically based

constraint should be the convergence of the turbulent fluxes
and LST to bare soil values when the aboveground biomass
approaches zero in a grid cell (e.g., when the leaf and stem
area index becomes zero in CLM3 or when GVF becomes
zero in Noah). In the earlier version of CLM, the conver-
gence of the under-canopy turbulent exchange coefficient Cs

was not considered, which led to an excessive warm bias of

Figure 1. Spatial distribution of assimilated NOAA-18 AMSU-A channel 15 (89 GHz) data from the
NCEP radiance assimilation monitoring for the operational GDAS at (a) 06:00 UTC, (b) 12:00 UTC,
(c) 18:00 UTC, 1 July, and (d) 00:00 UTC, 2 July 2007.
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around 10K in monthly mean ground temperature over
semiarid regions [Bonan et al., 2002]. This bias can be
reduced by the use of a more appropriate GVF data [Barlage
and Zeng, 2004]. To substantially reduce this bias, it is
necessary to consider the convergence of Cs to the bare soil
formulation as aboveground biomass goes to zero [Zeng
et al., 2005]. The convergence of canopy roughness length
and displacement height to bare soil values as the above-
ground biomass becomes zero has also been demonstrated to
significantly improve the wintertime simulation of turbulent
fluxes in CLM3 [Zeng and Wang, 2007]. In contrast to the
10 K warm bias of LST in the earlier version of CLM, Noah
has a cold bias of around 10K or more in the early afternoon
of summer over semiarid regions (demonstrated in section 2).
Previous efforts to reduce the LST bias in Noah has focused
on the adjustment of the coefficient Czil in the computation of
the ratio of momentum roughness length to thermal rough-
ness length (zom/zot) [e.g.,Mitchell et al., 2004], varying from
0.2 in the earlier version of Noah, 0.1 in the version of Noah
used in the Weather Research and Forecasting Model (WRF)
[Chen and Zhang, 2009], to (implicitly) zero in the opera-
tional GFS at NCEP (that is, zot = zom). More recently, this
issue was addressed from the context of land-atmosphere
coupling strength by Chen and Zhang [2009]. The goal of
this paper is to revise the computation of zom and zom/zot in
Noah, which represents a parallel effort with that of Chen
and Zhang [2009], and to address the improvement of LST
prediction and its effect on satellite data assimilation.
[7] In this study, the new formulations of momentum and

thermal roughness lengths are tested to reduce the GFS warm
season midday cold bias in LST. The impact of new rough-
ness length changes on the Tb calculation for satellite infrared
and microwave sensors in the GSI is investigated, especially
with regards to improving satellite data assimilation. The
NOAA-17 HIRS-3 and NOAA-18 AMSU-A sensors are
selected as the infrared and microwave sensors to focus on,
respectively. These two sensors have been used in the NCEP
GSI system for several years and their data quality and per-
formance are well understood.
[8] The HIRS is an operational atmospheric sounding

sensor which measures scene radiance with the 20 spectral
channels, i.e., 12 longwave (6.7–15 mm), 7 shortwave
infrared (3.7–4.6 mm) and 1 visible (0.69 mm) channel(s).
The swath width is 2160 km with a 10 km resolution, from a
spacecraft altitude of 837 km. The HIRSs have been carried
on the NOAA Polar Operational Environmental Satellites
(POES) for nearly 30 years, and their measurements have
been extensively used for many weather and climate studies
as well as forecasts [e.g., Kalnay et al., 1996; Andersson
et al., 2005; Zapotocny et al., 2005, 2008; Uppala et al.,
2005; Sakamoto and Christy, 2009].
[9] AMSU-A is a passive microwave sensor with 12

sounding channels and 3 window channels at 23.8, 31.4 and
89 GHz. Microwave observations in the window or near-
window channels are strongly affected by surface char-
acteristics and are very difficult to effectively use in NWP
models because the assimilation requires both accurate
surface temperature and emissivity calculations, which are
more challenging over land than over ocean [Weng et al.,
2001; Prigent et al., 2005; Karbou et al., 2006, 2007,
2010]. While the microwave land emissivity model [Weng

et al., 2001] enables the GSI system to assimilate micro-
wave measurements, there still remain outstanding problems
in using satellite measurements over arid or bare soil regions
such as western CONUS. Since both surface temperature
and emissivity contribute to Tb simulations, the significant
errors in GFS surface temperature predictions over arid
regions can produce large errors in Tb simulations.
[10] In section 2, we present comparisons of LST over the

CONUS from the NCEP operational GFS, satellite and
ground observations. The new treatment of momentum and
thermal roughness lengths and improvement of LST in the
GFS are addressed by section 3. The impact study of surface
skin temperature on satellite data assimilation in the GSI
system is given in section 4. The summary is given in
section 5.

2. Analysis of Land Skin Temperatures From
GFS, GDAS, and GLDAS

[11] In this section, we compare LST over CONUS from
GFS, GDAS and GLDAS (Global Land Data Assimilation
System) to the GOES-derived satellite measurements and
SURFRAD in situ data in summer 2007. The GFS LST is
obtained from 12 h to 36 h forecasts of the previous day’s
cycle at 12:00 UTC. In the GDAS data, we should mention
that the GOES brightness temperature is already assimilated
with the GSI.
[12] Developed jointly by NASA Goddard Space

Flight Center (GSFC) and NOAA NCEP, GLDAS ingests
satellite- and ground-based observational data products,
using advanced land surface modeling and data assimilation
techniques, to generate optimal fields of land surface states
and fluxes for weather and climate predictions [Rodell et al.,
2004]. The NCEP GLDAS data, covering 1979 to present,
was generated on the same horizontal grid, land mask, ter-
rain field, soil and vegetation types, seasonal cycle of green
vegetation fraction and surface albedo as in the GFS [Meng
et al., 2006]. The NCEP GLDAS is forced with the satellite-
gauged merged (CMAP) precipitation [Xie and Arkin, 1997]
and other near-surface atmospheric variables from GDAS.
[13] The GOES-derived LST is produced with the split

window technique through the partnership in GOES land
surface retrievals between NESDIS and the University of
Maryland [Pinker et al., 2003, 2009]. It provides gridded
fields of hourly LST at 0.5� spatial resolution in cloud-free
conditions throughout the year. The GOES-derived LST
demonstrates a remarkable ability to match the station-
observed mean diurnal cycle when verified against spring
and summer flux station LST observations over the SGP
ARM (Southern Great Plains/Atmospheric Radiation Mea-
surement) network [Mitchell et al., 2004].
[14] Figure 2 shows the average clear-sky LSTs at

18:00 UTC for July 2007, which is midday in local time over
the central United States. The GOES LST was retrieved only
over clear-sky conditions, and the data were missing for
5 days in July 2007 (16, 18, 19, 26 and 27 July). Therefore,
for a fair comparison, the average temperatures from GFS,
GDAS and GLDAS include only the time slices when the
GOES data are available at each grid cell. The horizontal
resolution of GFS, GDAS and GLDAS data is 0.3125� by
0.3125� in longitude and latitude. The GOES-derived data
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have a horizontal resolution of 0.5� by 0.5� in longitude and
latitude, and are bilinearly interpolated to the same resolution
as other data sets. In the GDAS data assimilation system, skin
temperature is the only surface field to be updated for a
diagnostic purpose and the forecast model does not use it. We
can see from Figure 2 that over the eastern CONUS, LSTs in
GFS, GDAS and GLDAS are pretty close to the GOES-
derived data. However, over the arid western CONUS, GFS,
GDAS and GLDAS have a similar problem, showing much
cooler LSTs compared to the GOES-derived data. The cold
bias can reach up to 12�C in large areas.
[15] We further use the Surface Radiation Budget Net-

work (SURFRAD) data [Augustine et al., 2000] for LST
verification. SURFRAD was established in 1993 through the
support of NOAA’s Office of Global Programs (now Cli-
mate Program Office), in order to support climate research
with accurate, continuous, long-term measurements per-
taining to the surface radiation budget over the United
States. Data are downloaded, quality controlled, and pro-
cessed into daily files that are distributed in near real time
(at http://www.srrb.noaa.gov). Currently seven SURFRAD
stations are operating in climatologically diverse regions.
There are three stations located in the western CONUS:
Desert Rock, Nevada (with a bare soil surface type); Boul-
der, Colorado (grassland); and Fort Peck, Montana (also
grassland). Figure 3 shows the averaged diurnal cycles of
LSTs for July 2007. All data sets have hourly LST except for
the GFS data set, which has only 18:00 UTC here, and the
LST from all gridded data sets are bilinearly interpolated to
SUFRAD sites.
[16] We first assess GOES LST against the in situ LST

observations. The GOES LST matches the station-observed
mean diurnal cycle very well with biases of �2.0K, �3.6K,
�0.4K and root-mean-square errors (RMSE) of 2.3K,
3.9K, 1.8K for Fort Peck, Boulder, and Desert Rock,
respectively. Boulder and Fort Peck show an overall cool
bias while Desert Rock shows a warm bias of 1–3�C that

occurs before or after local noon. This kind of smaller cool
biases could be related to undetected clouds or less prevalent
cloud cover such as subpixel cumulus [Mitchell et al., 2004].
At the Desert Rock station, the GFS, GDAS and GLDAS
show much larger cold bias of LST during daytime and still
have about 5�C cold bias during nighttime. The largest cold
biases appear at 20:00 UTC and can reach up to 15�C.
Similarly, daytime LSTs at Boulder have relatively cold
biases but not as large as those at Desert Rock, and at Fort
Peck the cold biases are even smaller.
[17] The other four SURFRAD stations are used for LST

verification over the eastern part (not shown). The LSTs of
GFS, GDAS and GLDAS are much closer to the observa-
tions in this region.
[18] Figure 4 shows the actual time series of LSTs of

GDAS, GOES and SURFRAD in July 2007 for three
SURFRAD stations over the western CONUS and one (Penn
State, PA) over the eastern CONUS. The GDAS results agree
well with the observations at the Penn State station during the
whole month, but show cold biases during daytime at the
other three stations. In particular, the substantial daytime cold
biases consistently exist during the whole month at the Desert
Rock station. Nighttime cold biases also exist but are much
smaller in magnitude than the daytime biases.
[19] In summary, the LST from the NCEP operational

GFS has a smaller bias over eastern CONUS but a sub-
stantial cold bias over western CONUS during daytime,
especially in arid or bare soil regions. The notably strong
cold bias of LST is also prevalent in other regions of the
world, yet the impact of our new formulations on this issue
was not directly quantified in this study. Figure 5 depicts the
vegetation category and GVF in the GFS model on 1 July.
Broadleaf or needleleaf evergreen/deciduous trees or culti-
vations with high GVF values dominate the eastern CONUS,
while the western part is covered by grassland, broadleaf
shrubs or even bare soil with small GVF values. Comparison
between Figures 2 and 5b shows that the cold bias is the

Figure 2. Average clear-sky land skin temperatures over CONUS at 18:00 UTC for July 2007.
(a) GOES, (b) GLDAS, (c) GDAS and (d) GFS.
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largest over arid regions. The cold bias is not due to vege-
tation itself but strongly related to GVF, especially for bare
soil as GVF approaches zero.

3. New Treatment of Momentum and Thermal
Roughness Lengths and Improvement of LST in
GFS

[20] In the current NCEP GFS thermal roughness length
(z0t) is taken as the same value as momentum roughness
length (z0m). This is usually not true, especially over arid or
semiarid regions, where GVF is low (as shown in Figure 5b)
and z0t is typically much smaller than z0m. Thus, the current
large z0t in the GFS contributes to large aerodynamic con-
ductance (Ch) and improper excess surface heat flux between
the land and the atmosphere for a given surface-air temper-
ature difference [Mitchell et al., 2004]. For a given surface
net radiation flux over semiarid regions, it is primarily bal-
anced by the sensible heat flux, and the increased Ch

requests the decrease of LST. We propose a new formulation
on ln(z′0m/z0t) as follows:

lnðz′0m=z0tÞ ¼ ð1� GVFÞ2Czilkðu*z0g=nÞ0:5 ð1Þ

where z′0m is the effective momentum roughness length
computed in (2) for each grid, z0t is the roughness length for
heat, Czil is a coefficient (taken as 0.8), k is the Von Karman
constant (0.4), n = 1.5 � 10�5 m2 s�1 is the molecular vis-
cosity, u* is the friction velocity, and z0g is the bare soil
roughness length for momentum (taken as 0.01 m).
[21] In order to consider the convergence of z0m between

fully vegetated and bare soil, the effective z′0m is computed:

lnðz′0mÞ ¼ ð1� GVFÞ2lnðz0gÞ þ ½1� ð1� GVFÞ2�lnðz0mÞ ð2Þ

To test the new roughness length formulations, the NCEP
operational GFS model at the resolution of T382L64 is used
for these experiments. A 3 day window (1–3 July 2007) is

Figure 3. Average diurnal cycle of land skin temperatures in July 2007 from GOES (black), SURFRAD
(blue), GDAS (red), GLDAS (purple), and GFS (green points, at 18:00 UTC) at (a) Desert Rock, Nevada;
(b) Boulder, Colorado; and (c) Fort Peck, Montana; and (d) SURFRAD network (from http://www.srrb.
noaa.gov).
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chosen for a case study in Figure 4, as most part of the
western CONUS was clear during this period. Furthermore,
the GFS LST cold biases over arid regions are persistent
from day to day (e.g., as shown in Figure 4 at the Desert
Rock station). Two 72 h forecasts, a control and sensitivity
run, are made from the 00:00 UTC, 1 July 2007 analysis.
For the control run, z0t is taken as the same value as z0m,
while in the sensitivity run, z0t and z′0m are computed from
equations (1) and (2).
[22] Figures 6 and 7 show the 3 day average land surface

skin temperature predicted by the GFS and comparison with
the GOES-derived satellite measurements and SURFRAD in
situ data. At 18:00 UTC (midday in local time over the
central United States) in the control run (Figure 6a), a sub-
stantial cold bias can be found over the west half of CONUS
(i.e., arid or semiarid regions). The new roughness length
formulations significantly reduce the cold bias in the western
CONUS, while the LST in the eastern CONUS, where the
bias is small in the control run, is not much affected. On the
other hand, the new formulations cause some positive biases

in the southern United States, which might be related to the
NESDIS 5 year monthly GVF climatology [Gutman and
Ignatov, 1998] used in the GFS. The GVF climatology
cannot capture real-time vegetation status [Jiang et al.,
2010]. The new real-time weekly GVF products developed
by Jiang et al. [2010] are more suitable for use in operational
numerical models including the GFS and could further
improve the GFS LST in the future. The Desert Rock station
(36.63�N, 116.02�W), located in the Nevada desert, is one of
the observation stations within the SURFRAD network. The
GOES-derived LST is very similar to the SURFRAD
observations (Figure 7a). However, the GFS control run
produces very low LST, compared to the observations,
especially during daytime. During midday, the cold bias can
reach up to�15�C. The sensitivity run produces a reasonable
LST diurnal cycle. The daytime LST increases substantially
and is very close to the observations. In Figure 7b, the aero-
dynamic conductance in the control run is too large during
daytime, and this is significantly reduced using the new
roughness length formulations in the sensitivity run. Note

Figure 4. Comparison of time series of LSTs of GDAS, GOES and SURFRAD at different SURFRAD
stations from 1 to 31 July 2007. Relative to SURFRAD, GOES and GDAS correlation coefficients, biases,
and RMSE are also given in parentheses, respectively.
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that the nighttime LST cold bias is only slightly improved by
our new formulations (Figure 7a), as the aerodynamic con-
ductance is not significantly affected at night (Figure 7b).
Further work is still needed to resolve this issue, particularly
from the perspective of turbulent mixing under stable con-
ditions and soil heat transfer at night.

Figure 6. Comparison of LST simulated in GFS and verifi-
cation with the observations. (a) Difference between GFS
and GOES in the control run at 18:00 UTC; (b) difference
between GFS and GOES in the sensitivity run at 18:00 UTC,
averaged from 1 to 3 July 2007.

Figure 5. (a) Vegetation types and (b) green vegetation
fraction on 1 July in the GFS model. Vegetation types 1 to
13 in Figure 5a denote broadleaf evergreen trees, broad
deciduous trees, broadleaf and needleleaf trees, needleleaf
evergreen trees, needleleaf deciduous trees, broadleaf trees
with ground cover, groundcover only, broadleaf shrubs with
groundcover, broadleaf shrubs with bare soil, dwarf trees and
shrubs with groundcover, bare soil, cultivations, and glacial.

Figure 7. Average diurnal cycle on 1–3 July 2007 for
(a) verification of LST with GOES (black) and SURFRAD
(blue) at Desert Rock, Nevada; red and green lines are for
the control and sensitivity runs, respectively; (b) aerody-
namic conductance (Ch) (no Ch observed or inferred from
observations); and (c) sensible heat flux (SH), latent heat
flux (LH), net radiation flux (Rnet) and ground heat flux (G).
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[23] Figure 7c shows the energy balance over this site. As
expected, latent heat flux is nearly zero over this very dry
area. Since sensible heat flux (SH) is proportional to Ch and
surface-air temperature difference (DT), the substantial
decrease of Ch during the day in the new run (Figure 7b)
requires the decrease of SH (Figure 7c) and increase of DT
(and hence LST). The higher daytime LST in the new run
(Figure 7a) increases ground heat flux and decreases the net
radiation flux (through increasing upward longwave radia-
tion) (Figure 7c).

4. LST Impacts on Satellite Data Assimilation

[24] The NCEP GFS forecast needs fields from the land
surface such as upward longwave radiation flux and surface
heat fluxes, which largely depend on LST predicted by the
model. Moreover, the GFS needs to provide atmospheric
profiles and surface fields to the GSI data assimilation sys-
tem. The GSI takes these GFS forecast fields and uses the
CRTM to simulate brightness temperatures for both infrared
and microwave sensors. The forecast fields, also referred to
as the first guess, are adjusted based on the analysis incre-
ment which is derived from an error weighted difference of
observed and simulated brightness temperatures [Wu et al.,
2002; Derber and Wu, 1998]. A bias correction is applied
to the simulated Tb.
[25] The calculation of Tb not only requires accurate

model input including atmospheric profiles and surface skin
temperatures, but also an accurate specification of the sur-
face emissivity. For infrared frequencies, the CRTM com-
putes surface emissivity via the IRSSE model for ocean [Van
Delst, 2003; Wu and Smith, 1997], and over land, a look-up
table of 24 surface types. The 13 GFS vegetation types are
matched to these 24 surface types in the CRTM. The database
of surface emissivity and reflectivity at infrared frequencies
over land are based on surface measured reflectance for these
surface types [Vogel et al., 2011].
[26] Microwave emissivity can be obtained according to

surface types such as land, snow, sea ice and ocean. A
microwave land emissivity model [Weng et al., 2001] is
employed using a two-stream radiative transfer approxima-
tion that quantifies the land emissivity over various surface
conditions such as snow cover, deserts and vegetation. The
emissivity model uses a three-layer medium and includes
volumetric scattering, emission and interface reflection. It
derives the reflection and transmission at the surface-air
interface and lower boundary by modifying the Fresnel
equations to account for cross-polarization and surface
roughness effects. At spectra frequencies between 4.9 and
94 GHz, the emissivity simulated by this model has shown a
good agreement with the ground-based radiometer mea-
surements for bare soil, grass land, and snow conditions.
However, large discrepancies were found over high latitudes
and desert regions [Weng et al., 2001].
[27] In order to examine the impact of LST improvements

in the GFS on data assimilation, we choose two sensors, the
NOAA-17 HIRS-3 and the NOAA-18 AMSU-A. With these
two sensors, we show how the LST improvement increases
utilization of infrared (IR) and microwave (MW) satellite
measurements in the GSI data assimilation system,
respectively.

4.1. NOAA-17 HIRS-3

[28] NOAA-17 HIRS-3 channel 8 (centered at 11.11
microns) is considered a window channel that is very sen-
sitive to surface characteristics. From the NCEP operational
radiance monitoring statistics, such window channels over
arid or semiarid regions are difficult to be used in the current
operational GSI data assimilation system because of large
biases in calculated Tb. Therefore, in this study we specifi-
cally focus on HIRS-3 channel 8. Two GSI analyses were
generated valid at 18:00 UTC, 1 July 2007. The control
analysis used forecast fields from the GFS control run. The
second analysis used forecast fields from the GFS using the
new roughness lengths. All satellite measurements and other
input data in the GSI are the same in both experiments.
[29] Quality control in the GSI rejects the satellite pixels

with relatively large brightness temperature biases and cloud
conditions. Figures 8a and 8b show the spatial distribution of
satellite pixels used in the GSI. In the control run, most of
the satellite data are excluded over the western CONUS
according to the rejection criteria. With the improvement in
LST, more satellite data are included in the data assimilation
system in this region (Figure 8b).
[30] To further illustrate the improvement in Tb simula-

tion, we focus on the western CONUS area within the red
box. We calculate Tb biases, RMSE and normalized fre-
quency distribution in 1K bins for all clear-sky pixels within
the red box. Figures 8c and 8d give these histograms for land
and various land surface categories in typically arid to
semiarid regions, like scrub soil (broadleaf shrubs with bare
soil in the GFS), scrub (groundcover or broadleaf shrubs
with perennial groundcover in the GFS) and bare soil. The
frequency distributions for these surface types are strongly
skewed to the left (negative bias) in the control run. This is
especially true for scrub soil and scrub which contribute
large errors to the entire land area since these two categories
dominate the western CONUS. These large errors are
reduced in the sensitivity experiment (Figure 8d) for all
categories. The bias over the land is reduced to �1.8K from
�6.0K and the RMSE is reduced to 3.9K from 7.7K with
respect to the control run.
[31] In order to quantitatively evaluate the impact of LST

on data assimilation, Table 1 lists the percentage of usable
data within the red box. After passing the quality control and
excluding cloud conditions, only very small percentage of
HIRS-3 data are actually utilized in the GSI over the entire
west CONUS land. Compared to the control run, the sensi-
tivity run more than doubles the usable data percentage.
Over scrub or scrub soil regions, the improvement is even
more dramatic.

4.2. NOAA-18 AMSU-A

[32] Using NOAA-18 AMSU-A, the brightness tempera-
ture at the top of atmosphere for a microwave channel can be
expressed as

Tb ¼ LST � ɛ � e�tð0;HÞ=m þ T↓
atmð1� ɛÞ � e�tð0;HÞ=m þ T↑

atm; ð3Þ

where ɛ is the surface emissivity, t is the atmospheric
optical thickness, m is the cosine of incident zenith angle,
H is the top-of-atmosphere height, and Tatm

↓ and Tatm
↑ are the

atmospheric downwelling and upwelling brightness tem-
peratures, respectively. For surface-sensitive channels (also
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called window channels), atmospheric absorption is weak,
and the second and the third terms on the right side of
equation (3) are small so that the Tb calculation largely
depends on the surface term (the first term on the right side
of equation (3)). Thus, LST and surface emissivity are key
factors in determining microwave Tb for window channels.
English [1999, 2008] used the simplified error analysis to
estimate the contribution of typical LST and emissivity
errors to Tb calculation. For the AMSU-A sensor, at a low
surface-to-space transmittance (t), brightness temperature
error shows a significant sensitivity to LST but little sensi-
tivity to emissivity. When transmission is high, both LST
and emissivity become important.
[33] Figure 9 plots data for NOAA AMSU-A channel 15.

The impact of the new roughness length formulations in the
GFS on utilization of AMSU-A data in the GSI can be seen
from Figures 9a and 9b. Over the western CONUS, many
more satellite pixels are used for data assimilation system
with a corresponding LST improvement. However, in some

regions such as southern California and southern Nevada,
as well as the western part of Mexico where it is mostly
covered by bare soil or broadleaf shrubs with bare soil, the
new roughness length scheme results in more satellite data
rejected in the GSI. Further investigation of the surface

Table 1. Percentage of Assimilated Data for Land, Scrub, Scrub
Soil and Bare Soil Categoriesa

Surface
Category

HIRS-3 AMSU-A

CTL
(%)

EXP
(%)

CTL
(%)

EXP
(%)

EXP + ɛ
(%)

Land 4.96 11.15 26.36 41.99 48.74
Scrub 3.87 10.55 18.27 41.33 46.67
Scrub soil 4.30 14.84 10.32 11.90 38.10
Bare soil 23.35 25.75 72.59 64.80 75.39

aControl run (CTL), sensitivity run with the new roughness lengths
(EXP) and the second sensitivity run with both the new roughness lengths
and the updated land emissivity model (EXP + ɛ).

Figure 8. Spatial distribution of satellite pixels used in GSI: brightness temperature bias of channel 8,
NOAA-17 HIRS-3 from (a) control run and (b) sensitivity run. Frequency distribution of Tb bias in 1K
bins for all clear-sky pixels within the western CONUS (red boxes in Figures 8a and 8b) from (c) control
run and (d) sensitivity run. Tb biases (first values in parentheses) and RMSE (second values in parenthe-
ses) for various land surface categories are also given. “Scrub” includes groundcover and broadleaf
shrubs with perennial groundcover in the GFS model. “Scrub soil” is broadleaf shrubs with bare soil
in the GFS model.
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emissivity calculation [Yan and Weng, 2009, 2011] indicates
that the land emissivity model in the CRTM produces
unreasonable high emissivity over these regions, particular
in window channels, and the mean error of desert emissivity
is typically larger than 0.04 and is 0.05 at the AMSU-A
frequencies.

[34] The microwave land emissivity model was recently
improved over bare soil and desert regions using the
empirical emissivity algorithm by Yan and Weng [2009,
2011]. Over bare soil and desert regions, they first generated
a desert microwave emissivity training database at window

Figure 10. Frequency distribution of Tb bias (channel 15)
in 1K bins for all clear-sky pixels within the western
CONUS (red boxes in Figure 9) from (a) control run,
(b) new roughness length sensitivity run, and (c) new emis-
sivity with new roughness length run. Tb biases (first values
in parentheses) and RMSE (second values in parentheses)
for various land surface categories (as in Figure 8) are also
given.

Figure 9. Spatial distribution of satellite pixels used in
GSI: brightness temperature bias of channel 15, NOAA-18
AMSU-A from (a) control run, (b) sensitivity run and
(c) sensitivity run with new land emissivity model.
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channels using the CRTM under clear-sky conditions. Then
they derived fitting coefficients for the emissivity estimate at
window channels from the training data set (with the
improved GFS LST). At other frequencies, emissivity was
interpolated according to a series of mean emissivity spectra
along subdesert type. Finally emissivity polarization was
calculated using the existing physical model [Weng et al.,
2001] as needed. With this updated land emissivity model,
we performed the new roughness length sensitivity experi-
ment again. It can be seen from Figure 9c that even more
satellite pixels are accepted in the GSI over the western
CONUS.
[35] The statistical analyses indicate a substantial

improvement in Tb simulation with the new roughness
lengths (Figure 10). In the control run, the frequency distri-
bution for the scrub category is broad and skewed to the left,
showing large cold bias (�3.8K) and large RMSE (6.0K).
In the new roughness length experiment, the bias was
changed from negative to positive, and both the bias and
RMSE were reduced (2.4K and 5.6K, respectively) and
were further improved with the new land emissivity model
(1.6K and 4.7K, respectively) as shown in Figure 10c.
Another category, scrub soil, also shows that bias was
changed from negative (�1.4K) in the control run to

positive but became larger (2.4K) in the new roughness
length experiment. Over bare soil regions, however, the
simulated Tb shows warm bias (2.3K) in the control run, and
even warmer bias and larger RMSE (4.4K and 6.9K,
respectively) in the new roughness length experiment. The
bias and RMSE got reduced with the new land emissivity
model (1.8K and 3.7K, respectively).
[36] Table 1 compares the percentages of assimilated

AMSU-A data for these experiments. Over scrub regions,
the improvement in the sensitivity run is substantial, but is
minimal over scrub soil regions or even worse over bare soil
regions. After the emissivity calculation is improved with
the updated land emissivity model [Yan and Weng, 2009],
more data are assimilated, particularly over scrub soil
regions (EXP + ɛ in Table 1), again indicating that both
surface emissivity and LST need to be improved in order to
realistically simulate brightness temperatures over bare soil
and desert regions.
[37] To test the robustness of our results, Figure 11 pre-

sents another example for improving the satellite data
assimilation (at 23.8 and 89 GHz, respectively) with both the
improved GFS LST and the updated land emissivity model
over North Africa, where the satellite data are rarely assim-
ilated in the current operational GSI. As expected, though

Figure 11. Spatial distribution of satellite pixels used in GSI over North Africa at 12:00 UTC, 1 July
2007: brightness temperature bias of NOAA-18 AMSU-A at channel 15 (89 GHz) from (a) control run
and (b) sensitivity run with new roughness length formulations and new land emissivity model, respec-
tively; and at channel 1 (23.8 GHz) from (c) control run and (d) sensitivity run with new roughness length
formulations and new land emissivity model, respectively.
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the GFS LST has a cold bias, the original land surface
emissivity model [Weng et al., 2001] produces higher desert
emissivity and results in large warm brightness temperature
biases, and consequently causes a high volume of rejection
of AMSU-A data over North Africa (Figures 11a and 11c).
After the reduction of GFS’s cold bias, the warm brightness
temperature biases become even larger (not shown). Along
with the new emissivity model, the reduction of warm biases
in brightness temperature and increase of assimilated satel-
lite data can be seen from Figures 11b and 11d (compared
with Figures 11a and 11c). This result again indicates that
the improvement of both LST and surface emissivity is
important in simulating brightness temperature and then in
improving satellite data utilization and assimilation, espe-
cially over desert regions.
[38] It is also noted that in this paper we limit the impact

study of GFS LST in the operational data assimilation sys-
tem GSI. For example, CRTM/GSI uses the microwave land
emissivity model from Weng et al. [2001] to estimate the
surface emissivity for the various surface conditions
encountered over the global continents, except over desert
regions where the newly developed land emissivity model
[Yan and Weng, 2009, 2011] is applied to avoid large
emissivity errors from the former model [Weng et al., 2001].
Alternative approaches are also available to improve surface
emissivity estimates such as using global land surface
emissivity maps [e.g., Prigent et al., 2005; Karbou et al.,
2006; Aires et al., 2010]. This should be worthy of future
study on the impacts of various emissivity calculations
together with the improved GFS LST.
[39] The new roughness length scheme not only increases

utilization of satellite data and reduces errors in brightness
temperature simulation at window channels, but also
improves the simulation of sounding channels. Figure 12
presents AMSU-A channel 4 (52.8 GHz) within the west-
ern CONUS as an example. Channel 4 is sensitive to the
average air temperature in a deep layer from the surface to
about 7 km of the troposphere. In the GFS, the new rough-
ness length formulations reduce the substantial cold bias in
LST over arid regions during daytime. At the same time, due
to the correction in land-atmosphere turbulent heat exchange
with the new roughness length formulations, biases in

atmospheric profiles are also reduced, particularly in the
lower troposphere. This issue will be further addressed in a
future paper.

5. Summary

[40] Satellite radiance data assimilation in various spectral
channels suffers from large biases in LST predicted by the
NCEP GFS. This paper compared LST over the CONUS
from the NCEP GFS, GDAS, GLDAS and the GOES-
derived satellite measurements and SURFRAD in situ data
in summer 2007. It was found that the GFS, GDAS and
GLDAS all have large cold biases in LST over the arid
western CONUS in warm season during daytime, when
compared against the GOES-derived or the surface obser-
vations from SURFRAD stations. The differences can reach
up to 12K or more at 18:00 UTC (approximately midday in
western CONUS). The large cold bias of LST results in large
errors in the CRTM simulated satellite brightness tempera-
tures over land and rejection of satellite data in the GSI for
surface-sensitive satellite channels.
[41] The new vegetation-dependent formulations of

momentum and thermal roughness lengths were tested in the
NCEP GFS model to reduce the substantial cold bias in LST
over arid and semiarid regions during daytime in the warm
seasons. This case study has shown that with an increased
daytime LST over western CONUS, there is an obvious
reduction in the large cold biases of calculated brightness
temperatures found for infrared and microwave satellite
sensors in window or near-window channels, so that many
more satellite measurements can be used in the GSI data
assimilation system.
[42] Brightness temperature calculation is affected by both

LST and land surface emissivity in the CRTM. Over desert
or bare soil regions, unreasonable surface emissivity for
microwave sensors in the CRTM was corrected, and the new
emissivity model together with increased LST via changes in
surface roughness length formulations gave smaller biases
and RMSE in the calculated brightness temperature. With
the results in this paper and additional extensive tests, the
new formulations (1) and (2) were implemented in the
operational GFS in May 2011.
[43] Note that the GFS forecast model and GSI are the two

main components within the complex NCEP global opera-
tional forecast and data assimilation system. In this system, a
new analysis is generated every 6 h with the GSI to initialize
a new global model GFS forecast. This forecast, in turn,
provides the background for the next GSI analysis [Kleist
et al., 2009]. In this paper, we only generated static GSI
analyses by GSI with no feedback of the analyses onto the
subsequent GFS forecast. Results from fully cycled GFS/
GSI experiments will be reported in our separate paper.
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Figure 12. The same as Figure 10 but for channel 4
(52.8 GHz) and for land only.
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